Featured image of post 二叉平衡树源码解析

二叉平衡树源码解析

二叉平衡树 AVL

树节点定义

树节点结构:

  • 节点的值 int
  • 左右子树节点
  • 树的高度(需要计算左右子树相对高度,决定是否平衡)
    • “节点高度”是指从该节点到它的最远叶节点的距离,即所经过的“边”的数量。需要特别注意的是,叶节点的高度为 0,而空节点的高度为 -1
1
2
3
4
5
6
7
8
9
public class TreeNode {
    int val;
    TreeNode left, right;
    int height;

    public TreeNode(int val) {
        this.val = val;
    }
}

树高度

  • 定义叶子结点的高度是 0,由于更新高度是取左右子树的高度最大值 + 1,而空节点在叶子结点的下面,所以空节点的高度是 -1
1
2
3
4
5
6
7
8
public int height(TreeNode root) {
    return root == null ? -1 : root.height;
}

public void updateHeight(TreeNode root) {
    if (root == null) return;
    root.height = Math.max(height(root.left), height(root.right)) + 1;
}

平衡因子

  • 节点的平衡因子(balance factor)定义为节点左子树的高度减去右子树的高度,同时规定空节点的平衡因子为 0
  • 所以任意一棵 AVL 的平衡因子 $f$ 满足 $-1 \le f \le 1$,即左右子树高度相差不会超过 1
1
2
3
4
public int balanceFactor(TreeNode root) {
    if (root == null) return 0;
    return height(root.left) - height(root.right);
}

树的旋转

右旋 RightRotate

AVL-right-rotate.png

  • child 为原点,向右旋转
  • 内侧子树(右旋,是左子树的右侧子树)移接到旋转的另一侧内侧
    • 即根左侧的右子树,移动到根右侧的左子树
  • 涉及到高度变化的是旧 root 和新根 child,因此需要更新
  • child 变成新的根节点
1
2
3
4
5
6
7
8
public TreeNode rightRotate(TreeNode root) {
    TreeNode child = root.left, grandChild = child.right;
    child.right = root;
    root.left = grandChild;
    updateHeight(root);
    updateHeight(child);
    return child;
}

左旋 LeftRotate

AVL-left-rotate.png

  • 左旋同理,与右旋镜像对称
1
2
3
4
5
6
7
8
public TreeNode leftRotate(TreeNode root) {
    TreeNode child = root.right, grandChild = child.left;
    child.left = root;
    root.right = grandChild;
    updateHeight(root);
    updateHeight(child);
    return child;
}

先左旋后右旋

AVL-left-right-rotate.png

先右旋再左旋

AVL-right-left-rotate.png

AVL 旋转策略

AVL-rotate-type.png

AVL-rotate-type-table.png

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
public TreeNode rotate(TreeNode root) {
    int balanceFactor = balanceFactor(root);
    // 左偏树
    if (balanceFactor > 1) {
        if (balanceFactor(root.left) >= 0) return rightRotate(root); // LL
        else {  // LR
            root.left = leftRotate(root.left);
            return rightRotate(root);
        }
    } else if (balanceFactor < -1) { // 右偏树
        if (balanceFactor(root.right) <= 0) return leftRotate(root); // RR
        else {  // RL
            root.right = rightRotate(root.right);
            return leftRotate(root);
        }
    }
    // 其他情况是平衡树,无需旋转
    return root;
}

插入节点

递归法

  • 类似 BST 插入,先找位置插入
  • 插入后需要更新节点高度,由于是递归调用,因此在每一层遍历更新一次节点高度即可
  • 插入后旋转当前节点,平衡子树,同样在递归中调用,每一层都会旋转调整
1
2
3
4
5
6
7
8
9
public TreeNode insert(TreeNode root, int val) {
    if (root == null) return new TreeNode(val);
    if (val < root.val) root.left = insert(root.left, val);
    else if (val > root.val) root.right = insert(root.right, val);
    else return root; // 重复节点,不插入
    updateHeight(root);  // 插入后更新高度
    root = rotate(root); // 旋转操作,使子树平衡
    return root;
}

递归法

  • 迭代法,向下找到插入位置的过程,将路径保存在栈中,然后自底向上更新高度和旋转
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
public TreeNode insert(TreeNode root, int val) {
    if (root == null) return new TreeNode(val);
    TreeNode cur = root, pre = null;
    Deque<TreeNode> stack = new ArrayDeque<>();
    // 找到插入位置
    while (cur != null) {
        stack.push(cur);
        pre = cur;
        if (val == cur.val) return root; // 重复值, 不插入
        if (val < cur.val) cur = cur.left;
        else cur = cur.right;
    }
    // 插入节点
    if (val < pre.val) pre.left = new TreeNode(val);
    else pre.right = new TreeNode(val);
    // 更新高度, 旋转维护 AVL 平衡, 自底向上
    while (!stack.isEmpty()) {
        TreeNode node = stack.pop();
        updateHeight(node);
        node = rotate(node);
        // 旋转后, 子树根节点可能变化, 更新父节点的子节点指向
        if (!stack.isEmpty()) {
            TreeNode parent = stack.peek(); // 不能 pop, 下一次 while-loop 需要更新高度和旋转
            if (node.val < parent.val) parent.left = node;
            else parent.right = node;
        } else {
            root = node;  // node 即是 AVL 的根节点
        }
    }
    return root;
}

删除节点

递归法

  • 如下做法,类似 BST,需要在删除节点后,更新 AVL 高度和旋转调整平衡,因此涉及到递归操作
  • 根据 val 递归搜索节点位置,并且需要重新调整 remove 后的节点位置,因为涉及旋转,子树根节点可能发生变化
  • 节点有 0 或 1 个为一种情况,直接取子节点作为新的子树节点删除即可
  • 节点有两个,需要取中序遍历的相邻较大节点(或者相邻较小节点),以下做法是将 root 值替换为 successor 的值,然后将右侧子树的 successor 删除掉,实现删除 root 的需求
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
public TreeNode remove(TreeNode root, int val) {
    if (root == null) return null;
    // 找节点删除
    if (val < root.val) root.left = remove(root.left, val);
    else if (val > root.val) root.right = remove(root.right, val);
    else {
        // 子节点有 0 或 1 个
        if (root.left == null || root.right == null) {
            TreeNode child = root.left == null ? root.right : root.left;
            if (child == null) root = null; // 无子节点,整树删除
            else root = child;  // 有一个子节点,子节点为新根
        } else { // 子节点有 2 个
            TreeNode successor = root.right;
            while (successor.left != null) successor = successor.left;
            root.right = remove(root.right, successor.val);
            root.val = successor.val;  // 值替换
        }
    }
    updateHeight(root); // 删除后更新高度
    root = rotate(root); // 旋转操作,使子树平衡
    return root;
}
  • 如果需要引用删除,而不是简答地进行值替换
    • 一样先找后继节点,然后 remove 递归删除掉右子树的后继节点(递归删除会更新高度和旋转),然后直接将 root 左右子树接在后继节点,实现替换,最后需要将新的 root 更新为后继节点(这是必要的,因为递归调用中,当前方法栈的高度和旋转维护是基于 root 的)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public TreeNode remove(TreeNode root, int val) {
    if (root == null) return null;
    // 找节点删除
    if (val < root.val) root.left = remove(root.left, val);
    else if (val > root.val) root.right = remove(root.right, val);
    else {
        // 子节点有 0 或 1 个
        if (root.left == null || root.right == null) {
            TreeNode child = root.left == null ? root.right : root.left;
            if (child == null) root = null; // 无子节点,整树删除
            else root = child;  // 有一个子节点,子节点为新根
        } else { // 子节点有 2 个
            TreeNode successor = root.right;
            while (successor.left != null) successor = successor.left; // 找到右子树的最左节点
            // 后继节点替换 root; 先将其从右子树删除, 再直接替代 root, 最后需要把 root 更新为后继节点
            root.right = remove(root.right, successor.val);
            successor.left = root.left;
            successor.right = root.right;
            root = successor;
        }
    }
    updateHeight(root); // 删除后更新高度
    root = rotate(root); // 旋转操作,使子树平衡
    return root;
}

迭代法

  • 迭代法,用栈记录向下遍历的路径,删除节点后自底向上更新树高度和旋转平衡
    • 与 BST 的删除操作迭代法类似,先让 cur 移动到待删除节点,然后找到中序遍历较大的节点 successor,即右子树的最左节点;将 successor 从右子树移除,再直接替代 cur 的位置,接上 cur 的左右子树到 successor 上即可。
    • 剥离 successor 的过程,一样需要记录到 stack 中,因为这一删除过程也需要更新树高度和旋转平衡
    • 不同于 BST 删除的是,BST 删除可以将 successor.right 交给 successorParent.left,自己成为新的 rootroot.left 接管 cur.left;AVL 删除涉及递归地更新每个可能变化的节点的高度和旋转平衡,参考递归法是用 remove(root.right, successor.val) ,可以保证递归过程的所有节点最后都是更新高度和旋转的。

单栈(错误代码)

  • 首先找到同 val 值的待删除节点 cur,过程需要用 stack 记录路径,后续自底向上更新高度和旋转平衡;还需要维护一个前继父节点 pre,删除 cur 后需要修改 pre 的指向
  • cur 有 0 或 1 个子节点,直接取孩子作为新的子树,接在 pre 上,即 cur 被移除
  • cur 有两个子节点,这里以中序遍历的较大后续节点替换 cur 为例(选择较小 predecessor 也行)
    • 参考递归法 root.right = remove(root.right, successor.val); 即删除右子树的后继节点 successor,然后 successor 替换 cursuccessor 接在 pre 上即可)
    • 这一过程也可以用迭代法来做,找 successor 过程依然用 stack 记录过程
  • 删除 cur 后,需要用栈自底向上更新高度和旋转平衡
    • 由于旋转平衡后,可能子树的根节点会变,因此还需要再从 stack.peek 中找到当前 pop 出节点的父节点,更新该父节点的引用,对应了递归法的 root.left = remove(root.left, val); ,每层递归过后都会 rotate 返回子树的新节点,还需要更新父节点指向。

重点在于迭代过程的 stack 记录的节点不能漏(少更新高度和平衡),同时 stack 压入的节点还需要保证相邻节点为父子关系

以下代码问题在于:stack 先记录了 [root, cur] 位置,然后又记录了 [cur, successor] ,但更新高度时,由于 cur 已被删除,虽然 pre 的孩子已经改为 successor,但是 cur 已经入栈,在 stack.peek 出的 pre 还是会指向旧的 cur 节点,引发错误

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
public TreeNode remove(TreeNode root, int val) {
    if (root == null) return null;
    // 找节点删除
    TreeNode cur = root, pre = null;
    Deque<TreeNode> stack = new ArrayDeque<>();
    while (cur != null) {
        stack.push(cur); // 记录路径
        if (val == cur.val) break;
        pre = cur;
        if (val < cur.val) cur = cur.left;
        else cur = cur.right;
    }
    if (cur == null) return root;  // 没有找到, 忽略删除
    // cur 就是待删除节点
    if (cur.left == null || cur.right == null) { // 待删除节点有 0 或 1 个子节点
        TreeNode child = cur.left == null ? cur.right : cur.left;
        // 删除根节点, 不影响子树高度和平衡, 可直接返回
        if (pre == null) return child;
        if (cur == pre.left) pre.left = child;
        else pre.right = child;
    } else {  // 有两个子节点
        TreeNode successor = cur.right, successorParent = cur;
        while (successor.left != null) {
            stack.push(successor);  // 记录路径
            successorParent = successor;
            successor = successor.left;
        }
        // cur 右子树删除 successor 节点
        if (successorParent == cur) {  // successor 是 cur 的直接右子节点
            successorParent.right = successor.right;
        } else {
            successorParent.left = successor.right;
        }
        // 删除 cur, successor 替换 cur
        successor.left = cur.left;
        successor.right = cur.right;
        // 维护新的 root(cur 的父节点)
        if (pre == null) root = successor; // 删除根节点
        else if (cur == pre.left) pre.left = successor;
        else pre.right = successor;
    }
    // 更新高度, 旋转维护 AVL 平衡, 自底向上
    while (!stack.isEmpty()) {
        TreeNode node = stack.pop();
        updateHeight(node);
        node = rotate(node);
        // 旋转后, 子树根节点可能变化, 更新父节点的子节点指向
        if (!stack.isEmpty()) {
            TreeNode parent = stack.peek(); // 不能 pop, 下一次 while-loop 需要更新高度和旋转
            if (node.val < parent.val) parent.left = node;
            else parent.right = node;
        } else {
            root = node;  // node 即是 AVL 的根节点
        }
    }
    return root;
}

双栈(可行方案)

  • 以上错误出在,已被删除的 cur 参与到高度更新中
  • 可以考虑双栈,stackCur 记录 [root, cur)stackSucc 记录 (cur, successor]
  • 考虑双栈的目的是:每递归调用一次 remove 就维护一个栈,这里涉及到递归移除 cur 右子树的 successor,所以再加一个栈
  • 几个细节
    1. 保证 cur 不能加入到 stackCur
    2. 保证 successor 替代 cur 后,加入到 stackCur ,保证 successor 在栈中相邻的直接父节点就是 pre
    3. 更新高度需要自底向上,先更新 stackSucc ,再更新 stackCurstackSucc 不能更新到 root,而 stackCur 最顶层需要更新 root(有可能删除的是 AVL 根节点)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
public TreeNode remove(TreeNode root, int val) {
    if (root == null) return null;
    // 找节点删除
    TreeNode cur = root, pre = null;
    Deque<TreeNode> stackCur = new ArrayDeque<>();  // 记录 Cur 之前的路径
    Deque<TreeNode> stackSucc = new ArrayDeque<>(); // 记录 Cur 到 Successor 的路径
    while (cur != null) {
        stackCur.push(cur); // 记录路径
        if (val == cur.val) break;
        pre = cur;
        if (val < cur.val) cur = cur.left;
        else cur = cur.right;
    }
    if (cur == null) return root;  // 没有找到, 忽略删除
    stackCur.pop(); // cur 会被删除, 所以不需要再更新
    // cur 就是待删除节点
    if (cur.left == null || cur.right == null) { // 待删除节点有 0 或 1 个子节点
        TreeNode child = cur.left == null ? cur.right : cur.left;
        // 删除根节点, 不影响子树高度和平衡, 可直接返回
        if (pre == null) return child;
        if (cur == pre.left) pre.left = child;
        else pre.right = child;
    } else {  // 有两个子节点
        TreeNode successor = cur.right, successorParent = cur;
        while (successor.left != null) {
            stackSucc.push(successor);  // 记录路径
            successorParent = successor;
            successor = successor.left;
        }
        // cur 右子树删除 successor 节点
        if (successorParent == cur) {  // successor 是 cur 的直接右子节点
            successorParent.right = successor.right;
        } else {
            successorParent.left = successor.right;
        }
        // 删除 cur, successor 替换 cur
        successor.left = cur.left;
        successor.right = cur.right;
        stackCur.push(successor);  // successor 替换 cur, 加入到 stackCur 中, 其父节点时 pre
        // 维护新的 root(cur 的父节点)
        if (pre == null) root = successor; // 删除根节点
        else if (cur == pre.left) pre.left = successor;
        else pre.right = successor;
    }
    // 更新高度, 旋转维护 AVL 平衡, 自底向上, 所以从 stackSucc 开始
    while (!stackSucc.isEmpty()) {
        TreeNode node = stackSucc.pop();
        updateHeight(node);
        node = rotate(node);
        // 旋转后, 子树根节点可能变化, 更新父节点的子节点指向
        if (!stackSucc.isEmpty()) {
            TreeNode parent = stackSucc.peek(); // 不能 pop, 下一次 while-loop 需要更新高度和旋转
            if (node.val < parent.val) parent.left = node;
            else parent.right = node;
        }
    }
    // 然后再更新 stackCur, 区别于 stackSucc, 多了 root 节点的更新, 可能删除的节点是 root
    while (!stackCur.isEmpty()) {
        TreeNode node = stackCur.pop();
        updateHeight(node);
        node = rotate(node);
        // 旋转后, 子树根节点可能变化, 更新父节点的子节点指向
        if (!stackCur.isEmpty()) {
            TreeNode parent = stackCur.peek(); // 不能 pop, 下一次 while-loop 需要更新高度和旋转
            if (node.val < parent.val) parent.left = node;
            else parent.right = node;
        } else {
            root = node;  // node 即是 AVL 的根节点
        }
    }
    return root;
}

单栈(修改版)

  • 以上开启双栈的目的是 cur 夹在 stack 中间,cur 被删除后破坏 stack 相邻节点是父子关系的逻辑,在维护高度和旋转的时候不正确
  • 可以想到找到 successor 后,可以直接将 stack 中夹在中间的 cur 替换为 successor,即 stack 记录过程: [root, cur] + [cur.right, successor) + replace(stack, cur, successor)
  • cur 只有 0 或 1 个子节点情况
    • 多了一个步骤,如果存在 child,则将 cur 替换为 child;没有 child,应该 pop 出栈顶的 cur
  • cur 有 2 个子节点情况
    • successor 替换 cur 后,需要更新栈状态:cur 替换为 successor
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
public TreeNode remove(TreeNode root, int val) {
    if (root == null) return null;
    // 找节点删除
    TreeNode cur = root, pre = null;
    Deque<TreeNode> stack = new ArrayDeque<>();
    while (cur != null) {
        stack.push(cur); // 记录路径
        if (val == cur.val) break;
        pre = cur;
        if (val < cur.val) cur = cur.left;
        else cur = cur.right;
    }
    if (cur == null) return root;  // 没有找到, 忽略删除
    // cur 就是待删除节点
    if (cur.left == null || cur.right == null) { // 待删除节点有 0 或 1 个子节点
        TreeNode child = cur.left == null ? cur.right : cur.left;
        // 删除根节点, 不影响子树高度和平衡, 可直接返回
        if (pre == null) return child;
        if (cur == pre.left) pre.left = child;
        else pre.right = child;
        if (child != null)
            replaceStack(stack, cur, child); // 将栈中 cur 替换为 child
        else
            stack.pop();  // 栈顶 cur 已被删除, 且没有新的子节点入栈
    } else {  // 有两个子节点
        TreeNode successor = cur.right, successorParent = cur;
        while (successor.left != null) {
            stack.push(successor);  // 记录路径
            successorParent = successor;
            successor = successor.left;
        }
        // cur 右子树删除 successor 节点
        if (successorParent == cur) {  // successor 是 cur 的直接右子节点
            successorParent.right = successor.right;
        } else {
            successorParent.left = successor.right;
        }
        // 删除 cur, successor 替换 cur
        successor.left = cur.left;
        successor.right = cur.right;
        replaceStack(stack, cur, successor); // 将栈中 cur 替换为 successor
        // 维护新的 root(cur 的父节点)
        if (pre == null) root = successor; // 删除根节点
        else if (cur == pre.left) pre.left = successor;
        else pre.right = successor;
    }
    // 更新高度, 旋转维护 AVL 平衡, 自底向上
    while (!stack.isEmpty()) {
        TreeNode node = stack.pop();
        updateHeight(node);
        node = rotate(node);
        // 旋转后, 子树根节点可能变化, 更新父节点的子节点指向
        if (!stack.isEmpty()) {
            TreeNode parent = stack.peek(); // 不能 pop, 下一次 while-loop 需要更新高度和旋转
            if (node.val < parent.val) parent.left = node;
            else parent.right = node;
        } else {
            root = node;  // node 即是 AVL 的根节点
        }
    }
    return root;
}

// 将 stack 中 oldNode 替换为 newNode
public void replaceStack(Deque<TreeNode> stack, TreeNode oldNode, TreeNode newNode) {
    Deque<TreeNode> tempStack = new LinkedList<>();
    while (!stack.isEmpty()) {
        TreeNode node = stack.pop();
        if (node == oldNode) {
            stack.push(newNode);
            break;
        } else {
            tempStack.push(node);
        }
    }
    // 将临时栈中的元素重新压入原栈
    while (!tempStack.isEmpty()) {
        stack.push(tempStack.pop());
    }
}

查找节点

同 BST 查找节点

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
/**
 * BST 查找
 *
 * @param root 根节点
 * @param num  待查找的值
 * @return 查找到的节点
 */
public TreeNode search(TreeNode root, int num) {
    TreeNode cur = root;
    while (cur != null) {
        if (num == cur.val) break;
        else if (num < cur.val) cur = cur.left;
        else cur = cur.right;
    }
    return cur;
}

单元测试

单元测试 AVL 插入和删除
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
public class Solution {
    public static void main(String[] args) {
        AVLTree avl = new AVLTree();
        TreeNode root = null;

        // 测试插入操作
        System.out.println("Insert Operation:");
        int[] insertValues = {30, 20, 40, 10, 25, 35, 50, 5, 15, 27, 26};
        for (int val : insertValues) {
            root = avl.insert(root, val);
            List<List<String>> levels = avl.levelOrderTraversal(root);
            printLevels(levels);
            System.out.println("----------");
        }

        // 测试删除操作
        System.out.println("Remove Operation:");
        int[] removeValues = {10, 20, 30, 5, 27};
        for (int val : removeValues) {
            root = avl.remove(root, val);
            List<List<String>> levels = avl.levelOrderTraversal(root);
            printLevels(levels);
            System.out.println("----------");
        }
    }

    // 打印层序遍历结果
    public static void printLevels(List<List<String>> levels) {
        for (List<String> level : levels) {
            System.out.println(level);
        }
    }
}

class TreeNode {
    int val;
    TreeNode left, right;
    int height;

    public TreeNode(int val) {
        this.val = val;
    }
}

class AVLTree {
    public int height(TreeNode root) {
        return root == null ? -1 : root.height;
    }

    public void updateHeight(TreeNode root) {
        if (root == null) return;
        root.height = Math.max(height(root.left), height(root.right)) + 1;
    }

    public int balanceFactor(TreeNode root) {
        if (root == null) return 0;
        return height(root.left) - height(root.right);
    }

    public TreeNode rightRotate(TreeNode root) {
        TreeNode child = root.left, grandChild = child.right;
        child.right = root;
        root.left = grandChild;
        updateHeight(root);
        updateHeight(child);
        return child;
    }

    public TreeNode leftRotate(TreeNode root) {
        TreeNode child = root.right, grandChild = child.left;
        child.left = root;
        root.right = grandChild;
        updateHeight(root);
        updateHeight(child);
        return child;
    }

    public TreeNode rotate(TreeNode root) {
        int balanceFactor = balanceFactor(root);
        // 左偏树
        if (balanceFactor > 1) {
            if (balanceFactor(root.left) >= 0) return rightRotate(root); // LL
            else {  // LR
                root.left = leftRotate(root.left);
                return rightRotate(root);
            }
        } else if (balanceFactor < -1) { // 右偏树
            if (balanceFactor(root.right) <= 0) return leftRotate(root); // RR
            else {  // RL
                root.right = rightRotate(root.right);
                return leftRotate(root);
            }
        }
        // 其他情况是平衡树,无需旋转
        return root;
    }

    public TreeNode insert(TreeNode root, int val) {
        if (root == null) return new TreeNode(val);
        if (val < root.val) root.left = insert(root.left, val);
        else if (val > root.val) root.right = insert(root.right, val);
        else return root; // 重复节点,不插入
        updateHeight(root);  // 插入后更新高度
        root = rotate(root); // 旋转操作,使子树平衡
        return root;
    }

    public TreeNode remove(TreeNode root, int val) {
        if (root == null) return null;
        // 找节点删除
        if (val < root.val) root.left = remove(root.left, val);
        else if (val > root.val) root.right = remove(root.right, val);
        else {
            // 子节点有 0 或 1 个
            if (root.left == null || root.right == null) {
                TreeNode child = root.left == null ? root.right : root.left;
                if (child == null) root = null; // 无子节点,整树删除
                else root = child;  // 有一个子节点,子节点为新根
            } else { // 子节点有 2 个
                TreeNode successor = root.right;
                while (successor.left != null) successor = successor.left; // 找到右子树的最左节点
                // 后继节点替换 root; 先将其从右子树删除, 再直接替代 root, 最后需要把 root 更新为后继节点
                root.right = remove(root.right, successor.val);
                successor.left = root.left;
                successor.right = root.right;
                root = successor;
            }
        }
        updateHeight(root); // 删除后更新高度
        root = rotate(root); // 旋转操作,使子树平衡
        return root;
    }

    // 层序遍历打印树结构
    public List<List<String>> levelOrderTraversal(TreeNode root) {
        List<List<String>> result = new ArrayList<>();
        if (root == null) return result;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.add(root);
        while (!queue.isEmpty()) {
            int levelSize = queue.size();
            List<String> level = new ArrayList<>();
            boolean isAllNull = true;
            for (int i = 0; i < levelSize; i++) {
                TreeNode node = queue.poll();
                if (node != null) {
                    level.add(String.valueOf(node.val));
                    queue.add(node.left);
                    queue.add(node.right);
                    isAllNull = false;
                } else {
                    level.add("#");
                }
            }
            if (!isAllNull)
                result.add(level);  // 只添加包含非空节点的层
        }
        return result;
    }
}
单元测试结果
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
Insert Operation:
[30]
----------
[30]
[20, #]
----------
[30]
[20, 40]
----------
[30]
[20, 40]
[10, #, #, #]
----------
[30]
[20, 40]
[10, 25, #, #]
----------
[30]
[20, 40]
[10, 25, 35, #]
----------
[30]
[20, 40]
[10, 25, 35, 50]
----------
[30]
[20, 40]
[10, 25, 35, 50]
[5, #, #, #, #, #, #, #]
----------
[30]
[20, 40]
[10, 25, 35, 50]
[5, 15, #, #, #, #, #, #]
----------
[30]
[20, 40]
[10, 25, 35, 50]
[5, 15, #, 27, #, #, #, #]
----------
[30]
[20, 40]
[10, 26, 35, 50]
[5, 15, 25, 27, #, #, #, #]
----------
Remove Operation:
[30]
[20, 40]
[15, 26, 35, 50]
[5, #, 25, 27, #, #, #, #]
----------
[30]
[25, 40]
[15, 26, 35, 50]
[5, #, #, 27, #, #, #, #]
----------
[35]
[25, 40]
[15, 26, #, 50]
[5, #, #, 27, #, #]
----------
[35]
[25, 40]
[15, 26, #, 50]
[#, #, #, 27, #, #]
----------
[35]
[25, 40]
[15, 26, #, 50]
----------

Algorithm 4th 实现源码

Algorithm 4th AVL 实现源码
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
/******************************************************************************
 *  Compilation:  javac AVLTreeST.java
 *  Execution:    java AVLTreeST < input.txt
 *  Dependencies: StdIn.java StdOut.java  
 *  Data files:   https://algs4.cs.princeton.edu/33balanced/tinyST.txt 
 *
 *  A symbol table implemented using an AVL tree.
 *
 *  % more tinyST.txt
 *  S E A R C H E X A M P L E
 *
 *  % java AVLTreeST < tinyST.txt
 *  A 8
 *  C 4
 *  E 12
 *  H 5
 *  L 11
 *  M 9
 *  P 10
 *  R 3
 *  S 0
 *  X 7
 *
 ******************************************************************************/

package edu.princeton.cs.algs4;

import java.util.NoSuchElementException;

/**
 *  The {@code AVLTreeST} class represents an ordered symbol table of
 *  generic key-value pairs. It supports the usual <em>put</em>, <em>get</em>,
 *  <em>contains</em>, <em>delete</em>, <em>size</em>, and <em>is-empty</em>
 *  methods. It also provides ordered methods for finding the <em>minimum</em>,
 *  <em>maximum</em>, <em>floor</em>, and <em>ceiling</em>. It also provides a
 *  <em>keys</em> method for iterating over all of the keys. A symbol table
 *  implements the <em>associative array</em> abstraction: when associating a
 *  value with a key that is already in the symbol table, the convention is to
 *  replace the old value with the new value. Unlike {@link java.util.Map}, this
 *  class uses the convention that values cannot be {@code null}
 *  —setting the value associated with a key to {@code null} is
 *  equivalent to deleting the key from the symbol table.
 *  <p>
 *  This symbol table implementation uses internally an
 *  <a href="https://en.wikipedia.org/wiki/AVL_tree"> AVL tree </a> (Georgy
 *  Adelson-Velsky and Evgenii Landis' tree) which is a self-balancing BST.
 *  In an AVL tree, the heights of the two child subtrees of any
 *  node differ by at most one; if at any time they differ by more than one,
 *  rebalancing is done to restore this property.
 *  <p>
 *  This implementation requires that the key type implements the
 *  {@code Comparable} interface and calls the {@code compareTo()} and
 *  method to compare two keys. It does not call either {@code equals()} or
 *  {@code hashCode()}. The <em>put</em>, <em>get</em>, <em>contains</em>,
 *  <em>delete</em>, <em>minimum</em>, <em>maximum</em>, <em>ceiling</em>, and
 *  <em>floor</em> operations each take logarithmic time in the worst case. The
 *  <em>size</em>, and <em>is-empty</em> operations take constant time.
 *  Construction also takes constant time.
 *
 *  For other implementations of the same API, see {@link ST}, {@link BinarySearchST},
 *  {@link SequentialSearchST}, {@link BST}, {@link RedBlackBST},
 *  {@link SeparateChainingHashST}, and {@link LinearProbingHashST}.
 *
 *  @author Marcelo Silva
 */

public class AVLTreeST<Key extends Comparable<Key>, Value> {

    /**
     * The root node.
     */
    private Node root;

    /**
     * This class represents an inner node of the AVL tree.
     */
    private class Node {
        private final Key key;   // the key
        private Value val;       // the associated value
        private int height;      // height of the subtree
        private int size;        // number of nodes in subtree
        private Node left;       // left subtree
        private Node right;      // right subtree

        public Node(Key key, Value val, int height, int size) {
            this.key = key;
            this.val = val;
            this.size = size;
            this.height = height;
        }
    }

    /**
     * Initializes an empty symbol table.
     */
    public AVLTreeST() {
    }

    /**
     * Checks if the symbol table is empty.
     *
     * @return {@code true} if the symbol table is empty.
     */
    public boolean isEmpty() {
        return root == null;
    }

    /**
     * Returns the number key-value pairs in the symbol table.
     *
     * @return the number key-value pairs in the symbol table
     */
    public int size() {
        return size(root);
    }

    /**
     * Returns the number of nodes in the subtree.
     *
     * @param x the subtree
     *
     * @return the number of nodes in the subtree
     */
    private int size(Node x) {
        if (x == null) return 0;
        return x.size;
    }

    /**
     * Returns the height of the internal AVL tree. It is assumed that the
     * height of an empty tree is -1 and the height of a tree with just one node
     * is 0.
     *
     * @return the height of the internal AVL tree
     */
    public int height() {
        return height(root);
    }

    /**
     * Returns the height of the subtree.
     *
     * @param x the subtree
     *
     * @return the height of the subtree.
     */
    private int height(Node x) {
        if (x == null) return -1;
        return x.height;
    }

    /**
     * Returns the value associated with the given key.
     *
     * @param key the key
     * @return the value associated with the given key if the key is in the
     *         symbol table and {@code null} if the key is not in the
     *         symbol table
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Value get(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to get() is null");
        Node x = get(root, key);
        if (x == null) return null;
        return x.val;
    }

    /**
     * Returns value associated with the given key in the subtree or
     * {@code null} if no such key.
     *
     * @param x the subtree
     * @param key the key
     * @return value associated with the given key in the subtree or
     *         {@code null} if no such key
     */
    private Node get(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp < 0) return get(x.left, key);
        else if (cmp > 0) return get(x.right, key);
        else return x;
    }

    /**
     * Checks if the symbol table contains the given key.
     *
     * @param key the key
     * @return {@code true} if the symbol table contains {@code key}
     *         and {@code false} otherwise
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public boolean contains(Key key) {
        return get(key) != null;
    }

    /**
     * Inserts the specified key-value pair into the symbol table, overwriting
     * the old value with the new value if the symbol table already contains the
     * specified key. Deletes the specified key (and its associated value) from
     * this symbol table if the specified value is {@code null}.
     *
     * @param key the key
     * @param val the value
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public void put(Key key, Value val) {
        if (key == null) throw new IllegalArgumentException("first argument to put() is null");
        if (val == null) {
            delete(key);
            return;
        }
        root = put(root, key, val);
        assert check();
    }

    /**
     * Inserts the key-value pair in the subtree. It overrides the old value
     * with the new value if the symbol table already contains the specified key
     * and deletes the specified key (and its associated value) from this symbol
     * table if the specified value is {@code null}.
     *
     * @param x the subtree
     * @param key the key
     * @param val the value
     * @return the subtree
     */
    private Node put(Node x, Key key, Value val) {
        if (x == null) return new Node(key, val, 0, 1);
        int cmp = key.compareTo(x.key);
        if (cmp < 0) {
            x.left = put(x.left, key, val);
        } else if (cmp > 0) {
            x.right = put(x.right, key, val);
        } else {
            x.val = val;
            return x;
        }
        x.size = 1 + size(x.left) + size(x.right);
        x.height = 1 + Math.max(height(x.left), height(x.right));
        return balance(x);
    }

    /**
     * Restores the AVL tree property of the subtree.
     *
     * @param x the subtree
     * @return the subtree with restored AVL property
     */
    private Node balance(Node x) {
        if (balanceFactor(x) < -1) {
            if (balanceFactor(x.right) > 0) {
                x.right = rotateRight(x.right);
            }
            x = rotateLeft(x);
        } else if (balanceFactor(x) > 1) {
            if (balanceFactor(x.left) < 0) {
                x.left = rotateLeft(x.left);
            }
            x = rotateRight(x);
        }
        return x;
    }

    /**
     * Returns the balance factor of the subtree. The balance factor is defined
     * as the difference in height of the left subtree and right subtree, in
     * this order. Therefore, a subtree with a balance factor of -1, 0 or 1 has
     * the AVL property since the heights of the two child subtrees differ by at
     * most one.
     *
     * @param x the subtree
     * @return the balance factor of the subtree
     */
    private int balanceFactor(Node x) {
        return height(x.left) - height(x.right);
    }

    /**
     * Rotates the given subtree to the right.
     *
     * @param x the subtree
     * @return the right rotated subtree
     */
    private Node rotateRight(Node x) {
        Node y = x.left;
        x.left = y.right;
        y.right = x;
        y.size = x.size;
        x.size = 1 + size(x.left) + size(x.right);
        x.height = 1 + Math.max(height(x.left), height(x.right));
        y.height = 1 + Math.max(height(y.left), height(y.right));
        return y;
    }

    /**
     * Rotates the given subtree to the left.
     *
     * @param x the subtree
     * @return the left rotated subtree
     */
    private Node rotateLeft(Node x) {
        Node y = x.right;
        x.right = y.left;
        y.left = x;
        y.size = x.size;
        x.size = 1 + size(x.left) + size(x.right);
        x.height = 1 + Math.max(height(x.left), height(x.right));
        y.height = 1 + Math.max(height(y.left), height(y.right));
        return y;
    }

    /**
     * Removes the specified key and its associated value from the symbol table
     * (if the key is in the symbol table).
     *
     * @param key the key
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public void delete(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to delete() is null");
        if (!contains(key)) return;
        root = delete(root, key);
        assert check();
    }

    /**
     * Removes the specified key and its associated value from the given
     * subtree.
     *
     * @param x the subtree
     * @param key the key
     * @return the updated subtree
     */
    private Node delete(Node x, Key key) {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) {
            x.left = delete(x.left, key);
        } else if (cmp > 0) {
            x.right = delete(x.right, key);
        } else {
            if (x.left == null) {
                return x.right;
            } else if (x.right == null) {
                return x.left;
            } else {
                Node y = x;
                x = min(y.right);
                x.right = deleteMin(y.right);
                x.left = y.left;
            }
        }
        x.size = 1 + size(x.left) + size(x.right);
        x.height = 1 + Math.max(height(x.left), height(x.right));
        return balance(x);
    }

    /**
     * Removes the smallest key and associated value from the symbol table.
     *
     * @throws NoSuchElementException if the symbol table is empty
     */
    public void deleteMin() {
        if (isEmpty()) throw new NoSuchElementException("called deleteMin() with empty symbol table");
        root = deleteMin(root);
        assert check();
    }

    /**
     * Removes the smallest key and associated value from the given subtree.
     *
     * @param x the subtree
     * @return the updated subtree
     */
    private Node deleteMin(Node x) {
        if (x.left == null) return x.right;
        x.left = deleteMin(x.left);
        x.size = 1 + size(x.left) + size(x.right);
        x.height = 1 + Math.max(height(x.left), height(x.right));
        return balance(x);
    }

    /**
     * Removes the largest key and associated value from the symbol table.
     *
     * @throws NoSuchElementException if the symbol table is empty
     */
    public void deleteMax() {
        if (isEmpty()) throw new NoSuchElementException("called deleteMax() with empty symbol table");
        root = deleteMax(root);
        assert check();
    }

    /**
     * Removes the largest key and associated value from the given subtree.
     *
     * @param x the subtree
     * @return the updated subtree
     */
    private Node deleteMax(Node x) {
        if (x.right == null) return x.left;
        x.right = deleteMax(x.right);
        x.size = 1 + size(x.left) + size(x.right);
        x.height = 1 + Math.max(height(x.left), height(x.right));
        return balance(x);
    }

    /**
     * Returns the smallest key in the symbol table.
     *
     * @return the smallest key in the symbol table
     * @throws NoSuchElementException if the symbol table is empty
     */
    public Key min() {
        if (isEmpty()) throw new NoSuchElementException("called min() with empty symbol table");
        return min(root).key;
    }

    /**
     * Returns the node with the smallest key in the subtree.
     *
     * @param x the subtree
     * @return the node with the smallest key in the subtree
     */
    private Node min(Node x) {
        if (x.left == null) return x;
        return min(x.left);
    }

    /**
     * Returns the largest key in the symbol table.
     *
     * @return the largest key in the symbol table
     * @throws NoSuchElementException if the symbol table is empty
     */
    public Key max() {
        if (isEmpty()) throw new NoSuchElementException("called max() with empty symbol table");
        return max(root).key;
    }

    /**
     * Returns the node with the largest key in the subtree.
     *
     * @param x the subtree
     * @return the node with the largest key in the subtree
     */
    private Node max(Node x) {
        if (x.right == null) return x;
        return max(x.right);
    }

    /**
     * Returns the largest key in the symbol table less than or equal to
     * {@code key}.
     *
     * @param key the key
     * @return the largest key in the symbol table less than or equal to
     *         {@code key}
     * @throws NoSuchElementException if the symbol table is empty
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Key floor(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to floor() is null");
        if (isEmpty()) throw new NoSuchElementException("called floor() with empty symbol table");
        Node x = floor(root, key);
        if (x == null) return null;
        else return x.key;
    }

    /**
     * Returns the node in the subtree with the largest key less than or equal
     * to the given key.
     *
     * @param x the subtree
     * @param key the key
     * @return the node in the subtree with the largest key less than or equal
     *         to the given key
     */
    private Node floor(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0) return x;
        if (cmp < 0) return floor(x.left, key);
        Node y = floor(x.right, key);
        if (y != null) return y;
        else return x;
    }

    /**
     * Returns the smallest key in the symbol table greater than or equal to
     * {@code key}.
     *
     * @param key the key
     * @return the smallest key in the symbol table greater than or equal to
     *         {@code key}
     * @throws NoSuchElementException if the symbol table is empty
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Key ceiling(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to ceiling() is null");
        if (isEmpty()) throw new NoSuchElementException("called ceiling() with empty symbol table");
        Node x = ceiling(root, key);
        if (x == null) return null;
        else return x.key;
    }

    /**
     * Returns the node in the subtree with the smallest key greater than or
     * equal to the given key.
     *
     * @param x the subtree
     * @param key the key
     * @return the node in the subtree with the smallest key greater than or
     *         equal to the given key
     */
    private Node ceiling(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0) return x;
        if (cmp > 0) return ceiling(x.right, key);
        Node y = ceiling(x.left, key);
        if (y != null) return y;
        else return x;
    }

    /**
     * Returns the kth smallest key in the symbol table.
     *
     * @param k the order statistic
     * @return the kth smallest key in the symbol table
     * @throws IllegalArgumentException unless {@code k} is between 0 and
     *             {@code size() -1 }
     */
    public Key select(int k) {
        if (k < 0 || k >= size()) throw new IllegalArgumentException("k is not in range 0-" + (size() - 1));
        Node x = select(root, k);
        return x.key;
    }

    /**
     * Returns the node with key the kth smallest key in the subtree.
     *
     * @param x the subtree
     * @param k the kth smallest key in the subtree
     * @return the node with key the kth smallest key in the subtree
     */
    private Node select(Node x, int k) {
        if (x == null) return null;
        int t = size(x.left);
        if (t > k) return select(x.left, k);
        else if (t < k) return select(x.right, k - t - 1);
        else return x;
    }

    /**
     * Returns the number of keys in the symbol table strictly less than
     * {@code key}.
     *
     * @param key the key
     * @return the number of keys in the symbol table strictly less than
     *         {@code key}
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public int rank(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to rank() is null");
        return rank(key, root);
    }

    /**
     * Returns the number of keys in the subtree less than key.
     *
     * @param key the key
     * @param x the subtree
     * @return the number of keys in the subtree less than key
     */
    private int rank(Key key, Node x) {
        if (x == null) return 0;
        int cmp = key.compareTo(x.key);
        if (cmp < 0) return rank(key, x.left);
        else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
        else return size(x.left);
    }

    /**
     * Returns all keys in the symbol table.
     *
     * @return all keys in the symbol table
     */
    public Iterable<Key> keys() {
        return keysInOrder();
    }

    /**
     * Returns all keys in the symbol table following an in-order traversal.
     *
     * @return all keys in the symbol table following an in-order traversal
     */
    public Iterable<Key> keysInOrder() {
        Queue<Key> queue = new Queue<Key>();
        keysInOrder(root, queue);
        return queue;
    }

    /**
     * Adds the keys in the subtree to queue following an in-order traversal.
     *
     * @param x the subtree
     * @param queue the queue
     */
    private void keysInOrder(Node x, Queue<Key> queue) {
        if (x == null) return;
        keysInOrder(x.left, queue);
        queue.enqueue(x.key);
        keysInOrder(x.right, queue);
    }

    /**
     * Returns all keys in the symbol table following a level-order traversal.
     *
     * @return all keys in the symbol table following a level-order traversal.
     */
    public Iterable<Key> keysLevelOrder() {
        Queue<Key> queue = new Queue<Key>();
        if (!isEmpty()) {
            Queue<Node> queue2 = new Queue<Node>();
            queue2.enqueue(root);
            while (!queue2.isEmpty()) {
                Node x = queue2.dequeue();
                queue.enqueue(x.key);
                if (x.left != null) {
                    queue2.enqueue(x.left);
                }
                if (x.right != null) {
                    queue2.enqueue(x.right);
                }
            }
        }
        return queue;
    }

    /**
     * Returns all keys in the symbol table in the given range.
     *
     * @param lo the lowest key
     * @param hi the highest key
     * @return all keys in the symbol table between {@code lo} (inclusive)
     *         and {@code hi} (exclusive)
     * @throws IllegalArgumentException if either {@code lo} or {@code hi}
     *             is {@code null}
     */
    public Iterable<Key> keys(Key lo, Key hi) {
        if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");
        if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");
        Queue<Key> queue = new Queue<Key>();
        keys(root, queue, lo, hi);
        return queue;
    }

    /**
     * Adds the keys between {@code lo} and {@code hi} in the subtree
     * to the {@code queue}.
     *
     * @param x the subtree
     * @param queue the queue
     * @param lo the lowest key
     * @param hi the highest key
     */
    private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {
        if (x == null) return;
        int cmplo = lo.compareTo(x.key);
        int cmphi = hi.compareTo(x.key);
        if (cmplo < 0) keys(x.left, queue, lo, hi);
        if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
        if (cmphi > 0) keys(x.right, queue, lo, hi);
    }

    /**
     * Returns the number of keys in the symbol table in the given range.
     *
     * @param lo minimum endpoint
     * @param hi maximum endpoint
     * @return the number of keys in the symbol table between {@code lo}
     *         (inclusive) and {@code hi} (exclusive)
     * @throws IllegalArgumentException if either {@code lo} or {@code hi}
     *             is {@code null}
     */
    public int size(Key lo, Key hi) {
        if (lo == null) throw new IllegalArgumentException("first argument to size() is null");
        if (hi == null) throw new IllegalArgumentException("second argument to size() is null");
        if (lo.compareTo(hi) > 0) return 0;
        if (contains(hi)) return rank(hi) - rank(lo) + 1;
        else return rank(hi) - rank(lo);
    }

    /**
     * Checks if the AVL tree invariants are fine.
     *
     * @return {@code true} if the AVL tree invariants are fine
     */
    private boolean check() {
        if (!isBST()) StdOut.println("Symmetric order not consistent");
        if (!isAVL()) StdOut.println("AVL property not consistent");
        if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
        if (!isRankConsistent()) StdOut.println("Ranks not consistent");
        return isBST() && isAVL() && isSizeConsistent() && isRankConsistent();
    }

    /**
     * Checks if AVL property is consistent.
     *
     * @return {@code true} if AVL property is consistent.
     */
    private boolean isAVL() {
        return isAVL(root);
    }

    /**
     * Checks if AVL property is consistent in the subtree.
     *
     * @param x the subtree
     * @return {@code true} if AVL property is consistent in the subtree
     */
    private boolean isAVL(Node x) {
        if (x == null) return true;
        int bf = balanceFactor(x);
        if (bf > 1 || bf < -1) return false;
        return isAVL(x.left) && isAVL(x.right);
    }

    /**
     * Checks if the symmetric order is consistent.
     *
     * @return {@code true} if the symmetric order is consistent
     */
    private boolean isBST() {
        return isBST(root, null, null);
    }

    /**
     * Checks if the tree rooted at x is a BST with all keys strictly between
     * min and max (if min or max is null, treat as empty constraint) Credit:
     * Bob Dondero's elegant solution
     *
     * @param x the subtree
     * @param min the minimum key in subtree
     * @param max the maximum key in subtree
     * @return {@code true} if if the symmetric order is consistent
     */
    private boolean isBST(Node x, Key min, Key max) {
        if (x == null) return true;
        if (min != null && x.key.compareTo(min) <= 0) return false;
        if (max != null && x.key.compareTo(max) >= 0) return false;
        return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
    }

    /**
     * Checks if size is consistent.
     *
     * @return {@code true} if size is consistent
     */
    private boolean isSizeConsistent() {
        return isSizeConsistent(root);
    }

    /**
     * Checks if the size of the subtree is consistent.
     *
     * @return {@code true} if the size of the subtree is consistent
     */
    private boolean isSizeConsistent(Node x) {
        if (x == null) return true;
        if (x.size != size(x.left) + size(x.right) + 1) return false;
        return isSizeConsistent(x.left) && isSizeConsistent(x.right);
    }

    /**
     * Checks if rank is consistent.
     *
     * @return {@code true} if rank is consistent
     */
    private boolean isRankConsistent() {
        for (int i = 0; i < size(); i++)
            if (i != rank(select(i))) return false;
        for (Key key : keys())
            if (key.compareTo(select(rank(key))) != 0) return false;
        return true;
    }

    /**
     * Unit tests the {@code AVLTreeST} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        AVLTreeST<String, Integer> st = new AVLTreeST<String, Integer>();
        for (int i = 0; !StdIn.isEmpty(); i++) {
            String key = StdIn.readString();
            st.put(key, i);
        }
        for (String s : st.keys())
            StdOut.println(s + " " + st.get(s));
        StdOut.println();
    }
}

/******************************************************************************
 *  Copyright 2002-2022, Robert Sedgewick and Kevin Wayne.
 *
 *  This file is part of algs4.jar, which accompanies the textbook
 *
 *      Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
 *      Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
 *      http://algs4.cs.princeton.edu
 *
 *
 *  algs4.jar is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  algs4.jar is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with algs4.jar.  If not, see http://www.gnu.org/licenses.
 ******************************************************************************/

Reference

Licensed under CC BY-NC-SA 4.0
使用 Hugo 构建
主题 StackJimmy 设计